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Abstract

This article is devoted to investigating sound insulation performance of a simply sup-

ported sandwich plate with an hourglass lattice core. The governing equations of lattice

core sandwich plate are established using the Reissner sandwich plate theory. The

solutions are derived using Fourier series expansion. The developed model is verified

through the comparison with the results of the models from the existing literature, as

well as finite element method (FEM). The effects of various structural and material

parameters, the incident angle, and azimuth angle of the incident sound on sound

insulation characteristics are investigated. It is demonstrated that the sandwich plate

with the hourglass lattice core can outperform that with the traditional lattice cores.

This work provides useful guidelines for the design of lightweight lattice sandwich

structures in the application of sound insulation.
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Introduction

Lightweight sandwich structures have attracted lots of research interest due to the
outstanding characteristics such as low density but high strength [1], shock resis-
tance [2], sound absorption [3–5], electromagnetic wave absorption [6], and
efficient heat isolation [7,8]. A sandwich structure could be regarded as a multi-
layered structure consisting of two or more face sheets with high strength and
stiffness separated by one or more soft cores with low density. The studies on
sandwich structures have been predominantly concentrated on the static properties
[9–12] and dynamic properties [13–17]. Sound propagation properties of sandwich
structures are also important in their applications for sound insulation.

In the past decade, sound insulation characteristics of the sandwich structures
have been investigated using various methods. The statistical energy method
[18–22] assumes that vibration modes are intensive in high frequency ranges,
thus is strongly limited for high frequency vibration and acoustic analysis. The
space-harmonics method has also been extensively exploited for the vibration and
sound radiation analysis of periodic structures. Lee and Kim [23,24] firstly studied
the sound insulation of a cylindrical shell and plate reinforced by periodically
arranged stiffeners, and derived the governing equations through expanding the
vibro-acoustic response into space harmonics. Similarly, researchers applied the
space-harmonics method to study the sound transmission loss (STL) of two-
dimensional and three-dimensional sandwich plates [25–28]. However, this
approach is mainly used for analyzing the dynamics of infinite periodic structures.
The transfer matrix method was also used for calculating the STL through the
infinitely extended construction which was made up of two solid plates and a series
of layers of porous materials [29].

Finite element method (FEM) and boundary element method, as numerical
methods, are also widely used in acoustic analysis since they can in principle be
applied for any complicated structures [30–32]. However, the complexity of the
structure geometry inevitably increases the computational expense and the accu-
mulative error often becomes significant in high frequency ranges. For the finite
sandwich structures, the vibro-acoustic performance has been investigated theo-
retically [33,34] using the modal function and Fourier series expansion, as well as
experimentally [35,36]. However, most of them did not clearly explain the gener-
ation mechanism of sound troughs and the disappearance of sound troughs for
certain azimuth angles under the oblique incident sound wave.

Although the static mechanical properties of the sandwich plate with hourglass
core have been extensively investigated [37–39], studies on its dynamic properties
are quite rare [17] in the literature. And the sound insulation performance of
simply supported sandwich plate with different lattice truss cores under both
oblique sound wave and diffuse sound field have not been fully explored.
Inspired by the aforementioned research, this work proposes a study on vibration
and STL properties of the sandwich plate with an hourglass lattice core and
attempts to fill this gap. First, the hourglass lattice core sandwich structure
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model is established using the Reissner sandwich plate theory. The natural fre-

quencies are analytically determined and validated by existing literature and FEM.

The STL is calculated by Fourier series expansion and validated by FEM.

Subsequently, the sound insulation performance of sandwich plates with hour-

glass, tetrahedral and pyramidal lattice cores are compared and discussed.

Finally, the effects of various parameters on vibration and sound insulation char-

acteristics of the hourglass lattice core sandwich plate are analyzed.

Theoretical modeling

Model formulation

Figure 1(a) shows the hourglass lattice truss core designed by Feng et al. [37,38] for

being used in sandwich structures. Though it is similar to the double-layer pyra-

midal truss lattice, its shear strength, compressive properties, and bending failure

loading capacity have been proved more excellent than the traditional pyramidal

Figure 1. (a) Hourglass core, (b) sandwich plate subjected to an incident sound wave, and (c)
deformation diagram of a differential element of the sandwich plate.
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one. The length, height, and radius of the rod of the lattice core are l, hc, and rc,
respectively. The span of one unit is d, and the inclination angle between the rod
and sheets is a. The relationships of the main parameters of the hourglass lattice
truss core can be obtained as l ¼ hc=sin a, d ¼ hc=tan a. Figure 1(b) shows the
sandwich plate under sound pressure. The sandwich plate consists of top and
bottom face sheets and hourglass lattice core. The x, y, and z directions correspond
to the length, width, and height of the sandwich plate, respectively. The length,
width, and thickness of the face sheets are a, b, and hf, respectively. The incident,
reflected, and transmitted sound waves are denoted by Pi, Pr, and Pt, respectively.
b and h represent the incident and azimuth angles of incident sound wave, respec-
tively. Figure 1(c) shows the deformation of a differential element of the sandwich
plate with length dx and width dy. The rotating angles of face sheets and core layer
are @w=@x and ux around the y axis, respectively.

Considering the form of sandwich structure and its boundary conditions as well
as the acoustic characteristics of the sound field, the Reissner theory is utilized for
formulating the analytical model [40], which considers shear strains of the core
on basis of classical plate theory. The total moments and shear forces can be
expressed as

Mx ¼ �D
@ux

@x
þ tf

@uy

@y

� �
; My ¼ �D tf

@ux

@x
þ @uy

@y

� �
;

Mxy ¼ � 1

2
Dð1� tfÞ @ux

@y
þ @uy

@x

� �
; Qx ¼ C

@w

@x
� ux

� �
; Qy ¼ C

@w

@y
� uy

� �
(1)

where w is the transverse displacement of the sandwich plate. D ¼ EfðhcþhfÞ2hf
2ð1�t2

f
Þ is the

effective bending stiffness of the hourglass lattice core sandwich plate, in which Ef

and tf represent the Young’s modulus and Poisson’s ratio of the face sheets, respec-

tively. C ¼ 2pr2cEshcsin a
l2

is the equivalent shear stiffness of core layer [37,41], in which

Es denotes the Young’s modulus of rods. Generally, for the core layer, the bending
stiffness can be neglected and only the shear deformation is considered for certain
structural sizes of the lattice sandwich plates [42,43], which will be discussed in
“Parametric study on vibro-acoustic performance” section. By using the Reissner
sandwich plate theory, the equilibrium equations are written as

@Mx

@x
þ @Mxy

@y
�Qx ¼ 0;

@Mxy

@x
þ @My

@y
�Qy ¼ 0;

@Qx

@x
þ @Qy

@y
þ q� qs

@2w

@t2
¼ 0

(2)

where q is the external load applied on the sandwich plate. qs¼ hcqcþ 2 hfqf is
the equivalent mass density per unit area of the sandwich plate, in which qf is
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the mass density of sheets. qc ¼ 4pr2cqr
l2sin acos2a is the equivalent density of core layer

and qr denotes the density of rods. Based on the in-unison vibration concept of
modal motions, a technique has been proved efficient to reduce the dimension
of the continuous systems, where functional relations between different degrees
of freedom exist [44]. Further, according to Guo et al. [45], ux and uy have
certain linear relationship with @w=@x and @w=@y corresponding to each vibra-
tion mode, which indicates that they are not completely independent. This
implies that the status of the sandwich plate at any point could actually be
described by using two functions instead of three. By introducing two indepen-
dent functions w and f, the rotation angles and the transverse displacement are
expressed as

ux ¼ @w
@x

þ @f

@y
; uy ¼

@w
@y

� @f

@x
; w ¼ w�D

C
r2w (3)

By substituting equation (3) into equation (1) and then combining the resultants
with equation (2), the governing equations of sandwich plate are obtained as

Dr2r2wþ qs
@2

@t2
w�D

C
r2w

� �
¼ q;

D

2
ð1� tfÞr2f� Cf ¼ 0 (4)

Considering that the sandwich plate is simply supported, we can write the
boundary conditions as [46]

w ¼ 0; Mx ¼ 0; uy ¼ 0; for x ¼ 0 and a
w ¼ 0; My ¼ 0; ux ¼ 0; for y ¼ 0 and b

(5)

where the reason for uy¼ 0 or ux ¼ 0 is given in Appendix 1.
Substituting equations (1) and (3) into equation (5) yields

w ¼ 0;
@2w
@x2

¼ 0;
@4w
@x4

¼ 0;
@f

@x
¼ 0; for x ¼ 0 and a

w ¼ 0;
@2w
@y2

¼ 0;
@4w
@y4

¼ 0;
@f

@y
¼ 0; for y ¼ 0 and b

(6)

For the simply supported sandwich plate, it is deduced that f � 0 from equa-
tions (3), (5), and (6). The detailed derivation procedures are provided in
Appendix 2. Omitting the applied load, the governing equation is written as

Dr2r2wþ qs
@2

@t2
w�D

C
r2w

� �
¼ 0 (7)
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The deformation of freely vibrating sandwich plate that satisfies the boundary
conditions (i.e., equation (6)) is given as

w ¼ Amnsin
mpx
a

sin
npy
b

ejxmnt (8)

where j ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit, Amn is the amplitude of w, and xmn denotes
the circular frequency of freely vibrating sandwich plate which is obtained by
substituting equation (8) into equation (7)

x2
mn ¼

Dp4

qsa4
ðm2 þ k2n2Þ2

1þ k2ðm2 þ k2n2Þ ; ðm; n ¼ 1; 2; 3; . . .Þ (9)

where m and n represent the mode numbers, k ¼ p
a

ffiffiffi
D
C

q
and k ¼ a

b. Therefore, the
natural frequencies are expressed as

fmn ¼ p
2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

qs

ðm2 þ k2n2Þ2
1þ k2ðm2 þ k2n2Þ

s
; ðm; n ¼ 1; 2; 3; . . .Þ (10)

With a harmonic travelling plane wave obliquely incident on the top face sheet
(as shown in Figure 1(b)), the incident pressure wave is given as

Piðx; y; z; tÞ ¼ Pi0e
jðxt�kxx�kyy�kzzÞ (11)

where Pi0 and x represent amplitude and circular frequency of the incident wave,
respectively. kx, ky, and kz are the components of wave number along the x-, y- and
z-directions and they are expressed as

kx ¼ k0sinbcos h; ky ¼ k0sinbsin h; kx ¼ k0cos h (12)

where k0 ¼ x
c
denotes wave number of the sound waves in air, and c denotes the

sound speed. The reflected sound pressure of the top face sheet is given as [47]

Prðx; y; z; tÞ ¼
X1
m¼1

X1
n¼1

WmnPrmne
jðxtþkzzÞ (13)

where Wmn ¼ sin mpx
a sin npy

b is the shape function of sandwich plate, Prmn are modal
amplitudes of the reflected sound pressure. Similarly, the transmitted sound pres-
sure is expressed as [47]

Ptðx; y; z; tÞ ¼
X1
m¼1

X1
n¼1

WmnPtmne
jðxt�kzzÞ (14)
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where Ptmn are modal amplitudes of the transmitted pressure wave. The
governing equation of the sandwich plate under the excitation of the combined
sound pressure (i.e., incident, reflected and transmitted sound pressures) can be
obtained as

Dr2r2wþ qs
@2

@t2
w�D

C
r2w

� �

¼ pi x; y;
hc þ 2hf

2
; t

� �
þ pr x; y;

hc þ 2hf
2

; t

� �
� pt x; y;� hc þ 2hf

2
; t

� � (15)

By using the Fourier Series expansion, the incident sound pressure can be
expressed as

Pi0e
jðxt�kxx�kyy�kzzÞ ¼

X1
m¼1

X1
n¼1

WmnPimne
jðxt�kzzÞ (16)

and the modal amplitudes of the incident pressure wave can be obtained as

Pimn ¼ 4

ab

Z a

0

Z b

0

Pi0e
jð�kxx�kyyÞWmndxdy (17)

After the integral calculation, Pimn is expressed as follows

Pimn ¼ 4mnp2Pi0ðe�jkxacosmp� 1Þðe�jkybcos np� 1Þ
½ðkxaÞ2 � ðmpÞ2�½ðkybÞ2 � ðnpÞ2� (18)

At the interfaces between the air and face sheets, the continuity conditions of
acoustic and elastic velocities normal to the face sheets require

@ðPi þ PrÞ
@z

¼ q0x
2w; for z ¼ hc þ 2hf

2
;

@Pt

@z
¼ q0x

2w; for z ¼ � hc þ 2hf
2

(19)

where q0 denotes the density of air.
For the forced vibration of sandwich plate, dynamic response is obtained by the

superposition of mode shapes

w ¼
X1
m¼1

X1
n¼1

AmnWmne
jxt (20)
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Substituting equations (11), (13), (14), and (16) into equation (19), and com-
bining with equations (3) and (20), the relationships between Prmn, Ptmn, and Amn

can be obtained

Prmn ¼ AmnðBmnD=Cþ 1Þq0x2

jkze�jkzðhc=2þhfÞ þ Pimne
jkzðhcþ2hfÞ (21)

Ptmn ¼ AmnðBmnD=Cþ 1Þq0x2

�jkze�jkzðhc=2þhfÞ (22)

where Bmn ¼ mp
a

� �2 þ np
b

� �2. Substituting equations (21) and (22) into equations (13)
and (14), and then combining with equations (20) and (15), the coefficient Amn can
be obtained as

Amn ¼ 2Pimne
jkzðhc=2þhfÞ

DB2
mn � x2 qs � 2jq0

kz

� �
D
C Bmn þ 1
� � (23)

Substituting equation (23) into equation (22), Ptmn can be expressed as

Ptmn ¼
jq0x

2 D
C Bmn þ 1
� �

ejkzðhc=2þhfÞ

kz
Amn (24)

The transmission coefficient under an oblique incident sound wave is
defined as

s½ðb; hÞ� ¼ Wi=Wt (25)

in which Wi and Wt are the incident and transmitted sound power, respectively,
and they are expressed as

Wi ¼ 1

2
Re

Z Z
A

Pi � v�i dA (26)

Wt ¼ 1

2
Re

Z Z
A

Pt � v�t dA (27)

where vi ¼ Pi=ðq0cÞ and vt ¼ Pt=ðq0cÞ are the acoustic particle velocities on the
incident and transmitted sides, respectively. The superscript star “*” means the
complex conjugate. Since resultant power intensity of a multi-frequency wave is
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the linear superposition of the power intensities of each frequency component, one

obtains

Wi

Wt
¼

X1
m¼1

X1
n¼1

jPimnj2X1
m¼1

X1
n¼1

jPtmnj2
(28)

The transmission coefficient under the diffuse incident field is given as [34]

sd ¼

Z 2p

0

Z p=2

0

sðb; hÞsinðbÞcosðbÞdbdhZ 2p

0

Z p=2

0

sinðbÞcosðbÞdbdh
(29)

Based on equations (25) and (29), the STL for the sandwich plate under an

oblique incident sound wave and diffuse incident field can be calculated by [32]

STL ¼ 10lg½sðb; hÞ�
10lgsd

(
(30)

Model validation

The natural frequencies of an example pyramidal lattice core sandwich plate model

from the literature [46] are calculated by using the method presented in the previ-

ous section, in which the core layer and face sheets are all made of steel. The

dimensions and material parameters used in the calculation are: qf¼ 7800 kg/m3,

Ef¼ 210GPa, �¼ 0.3, a ¼ 1.06 m, b ¼ 1.06 m, rc¼ 3� 10�3m, hf ¼ 2.5� 10�3m,

hc ¼ 0.03 m, and d ¼ 0.0424 m. The results are listed in Table 1 and compared

with the published literature [46,48, 49]. The relative errors are acceptable and it is

noted that the results calculated by the analytical method are a bit higher because

Table 1. Natural frequencies of the pyramidal lattice core sandwich plate by different methods.

Modes (m, n) (1, 1) (1, 2), (2,1) (2, 2) (1, 3), (3, 1) (2, 3), (3, 2)

Ref. [46] 203.76Hz 445.10Hz 640.37Hz 752.51Hz 903.89Hz

Ref. [48] 204.93Hz 451.02Hz 652.01Hz 769.27Hz 927.07Hz

Ref. [49] 193.88Hz 448.95Hz 646.92Hz 791.90Hz 945.07Hz

Present method 206.63Hz 458.04Hz 665.20Hz 786.59Hz 950.41Hz

Guo et al. 9



the Reissner plate theory does not take into account the influence of rotary inertia
which was taken into account in the references.

To verify the effectiveness of the presented model in-depth, FEM is used to
calculate the frequencies of the hourglass lattice truss core sandwich plate.
Material and geometric parameters for the sandwich structure composed of steel
are listed in Table 2. The length and width of the hourglass core sandwich plate are
set to be the lengths of 30 and 25 unit cells, respectively.

The natural frequencies of simply supported sandwich plate calculated by the
analytical method and FEM are presented in Table 3. The model in Figure 2 is
built by commercial software ANSYS, in which the face sheets are emulated by
SHELL181 element and the lattice truss core is emulated by BEAM189 element.
After generating the mesh, the coincident nodes of the shell and beam elements are
merged to ensure the sheets and rods are consolidated at top and bottom inter-
faces. It is noteworthy that the top and bottom face sheets section offset should be
respectively bottom-plane and top-plane to keep the bending stiffness of the sand-
wich plate accuracy. A good agreement could be observed between the results from
the analytical model and FEM.

Further, the results of modal analysis for the simply supported sandwich plate
from ANSYS are imported into the commercial software Virtual Lab for calcu-
lating the STL. The reverberation and anechoic chambers are simulated by two

Table 2. Material and geometric parameters of the hourglass lattice core sandwich plate.

Ef, Es (GPa) t qf, qr (kg/m
3) hf (mm) hc (mm) rc (mm) a (�) a (mm) b (mm)

210 0.3 7930 1 15 1 45 450 375

Table 3. Natural frequencies (Hz) of the hourglass lattice core sandwich plate.

Modes (m, n) (1, 1) (2,1) (1, 2) (2,2) (3, 1)

Present model 615.53Hz 1298.04Hz 1576.88Hz 2170.07Hz 2297.57Hz

ANSYS 615.06Hz 1247.20Hz 1512.00Hz 2037.40Hz 2128.80Hz

Relative error 0.7% 3.9% 4.1% 6.1% 7.3%

Figure 2. Finite element model of the hourglass lattice core sandwich plate developed with
ANSYS.
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rectangle acoustic meshes established on the two sides of the sandwich plate as
shown in Figure 3. The air density is 1.29 kg/m3 and the sound velocity is 340m/s.
The outer surfaces of the two acoustic meshes utilize the automatically matched
layer. The top and bottom face sheets are coupled with the inner surfaces of
reverberation and anechoic chambers, respectively. In order to calculate the STL
under the oblique incident sound wave and diffuse incident field, the acoustic
sources are respectively set to 1 plane wave and 12 plane waves, in which the
former is incident on the sandwich plate with an incident angle p/6 and azimuth
angle p/4. Finally, the STL of sandwich plate can be calculated by modal super-
position vibro-acoustics response analysis.The comparison of the STL calculated
by analytical method (i.e., equation (30)) and FEM under oblique sound wave and
diffuse sound field are shown in Figure 4, respectively. It is observed that the
amplitude and overall tendency of STL of the numerical results by FEM agree
well with analytical model, while the sound troughs in analytical model move to
higher frequencies than those from FEM as the frequency of sound wave increases,
due to the fact that the Reissner plate theory does not take into account the rotary
inertia. Because the STL under oblique sound wave shows similar tendency to that
of diffuse sound field, the following studies will investigate the characteristic of
STL of sandwich plate under oblique sound wave.

Model convergence

In the derivation of the STL, the dynamic response of the sandwich plate is
approximated by the superposition of modal contributions. The sound pressures
are also expanded in terms of the plate mode shape functions. It can be seen from

Figure 3. The acoustic vibration coupled FEM model for STL under 1 plane wave source and 12
plane wave sources.
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equation (28) that the derived STL expression also includes the superposition of a

series of the mode shape functions of the sandwich plate. The employment of the

modal superposition method significantly reduces the complexity of the problem

but the accuracy of the final result depends on the number of modes that are

involved in calculation. Therefore, a simple case study is given to determine the

number of modes required to ensure convergence.
Normally, for a specific frequency, if the STL result converges, then the model

convergence in the entire range below that frequency can be guaranteed by using

the same number of modes in calculation. To verify convergence of the theoretical

model, the sound insulation at 5000Hz is calculated with varying number of modes

included. By regarding the STL value calculated using 200 modes (i.e.,

m ¼ n ¼ 200) as converged, the evolution of the relative error of the STL value

with the variation of the number of modes being used in the calculation is shown in

Figure 5. It is noted that the result can already be deemed as converged when m/n

is larger than 100. Therefore, in consideration of the balance between the compu-

tation cost and accuracy, m and n are both set to be 100 in the following case

studies.

Sound trough generation mechanism

From the STL spectrum of the hourglass lattice core sandwich plate presented in

Figure 4(a), it is observed that when the incident angle is p/6 and the azimuth angle

is p/4, in the frequency range from 0 to 2000Hz, there exist three sound troughs

which corresponds to the first three natural frequencies. This is because when the

frequencies of incident sound waves match the natural frequencies of sandwich

plate, resonance phenomenon occurs in the sandwich plate, which leads to the

generation of an intensive structure-borne sound (i.e., the transmitted sound)

Figure 4. Comparison of STL calculated by analytical method and FEM under (a) oblique sound
wave with incident angle b¼ p/6 and azimuth angle h¼ p/4 and (b) diffuse sound field.
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and minimum STL [35]. Consequently, a great portion of the sound energy pen-

etrates the sandwich plate and the sound troughs form in the STL spectrum.

Comparison between analytical and WFE methods

Figure 6 depicts the STL for an incident sound wave with (b, h)=(p/3, p/6) by
using the analytical method presented in this work and the wave finite

element (WFE) method [32]. It is worth mentioning that the analytical method

calculates a finite sandwich plate with simply supported boundary conditions,

while the WFE method calculates an infinite sandwich plate. The troughs in the

solid curve are induced by the structural resonances while the trough on the dashed

line is due to coincidence (1600Hz). It is found that at high frequencies (above

Figure 5. The convergence of STL for the sandwich plate with hourglass lattice core.

Figure 6. Comparison of STL for the finite and infinite sandwich plates with hourglass core.

Guo et al. 13



1000Hz), a good agreement on STL can be observed except for the troughs due to

resonance frequencies. Therefore, this also indirectly confirms the effectiveness of

present model.

Comparison of different lattice cores

It has been reported that some mechanical properties of the hourglass lattice core

sandwich plate are superior to those of the traditional pyramidal one [37,38].

Therefore, it is inspired to conduct a study to compare them in terms of their

dynamic properties as well. Figure 7 shows the schematics of the pyramidal and

tetrahedral lattice cores.
The entire weight, structural, and material parameters of the lattice unit and

sandwich plate for the pyramidal and tetrahedral cores are determined based on

the hourglass lattice core plate according to the rule of weight equality. It is

assumed that the length and width of the two different core sandwich plates, the

span and height of a lattice unit are the same as those of hourglass core sandwich

plate. Only the radius of rods is tunable and other parameters are kept constant to

ensure a fair comparison among the three types of sandwich plates. The radii of

rods in the pyramidal and tetrahedral lattice cores are obtained to be 1.075mm and

1.346mm according to the rule of weight equality, respectively.
The sound insulation performance of sandwich plates with pyramidal, tetrahe-

dral, and hourglass lattice cores under diffuse sound field are compared in

Figure 8. It can be found that most of the sound troughs of the sandwich plate

with hourglass core move to higher frequencies as compared to the other two

sandwich plates in the high frequency range, because the equivalent shear modulus

of hourglass lattice core is higher than those of the other two counterparts (2.07,

1.84, and 1.77 GPa for the hourglass, pyramidal, and tetrahedral lattice cores,

respectively). In addition, the sandwich plate with hourglass core exhibits larger

peaks and smaller troughs, which indicates a better sound insulation. By contrast,

the tetrahedral one shows the worst sound insulation. From this perspective, the

Figure 7. (a) Pyramidal lattice core, (b) tetrahedral lattice core.
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sandwich plate with hourglass lattice core deserves further investigation on its

vibration and acoustic performance.

Parametric study on vibro-acoustic performance

Based on the established analytical model, effects of the geometric and material

parameters on the vibro-acoustic performance of the sandwich plate with hour-

glass lattice core are analyzed. Recall that the contribution in the effective bending

stiffness of the sandwich plate from core layer is neglected in the modeling. In

order to confirm this hypothesis, a supplementary study is provided in Appendix 3

to demonstrate that when the structural parameters change within certain ranges,

the sandwich core indeed has only negligible contribution to the total effective

bending stiffness D of the sandwich structure.

Effect of geometric parameters

The top and bottom face sheets of the sandwich plate are joined by hourglass

lattice truss core, which implies that the height of the lattice core is just the internal

distance between the two sheets. Changing the height of the lattice core is equiv-

alent to changing the inclination angle and length of rods on the premise of keep-

ing other parameters constant. It can be speculated that the equivalent stiffness,

shear stiffness, and density of the sandwich structure will change accordingly, as

well as the vibro-acoustic performance.
Effect of the height of hourglass lattice core (i.e., hc) on first four natural fre-

quencies of the sandwich plate is demonstrated in Figure 9 where hc ranges from 7

to 15mm. It is observed that with the increase of hc, all the natural frequencies

show an increasing trend and the rate of increase declines gradually, because the

bending and shear stiffness of the sandwich plate increase correspondingly and

Figure 8. Comparison of STL for sandwich plates with three different lattice truss cores under
diffuse sound field.
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they are dominant to the increasing mass. Hence, the first four natural frequencies
of the sandwich plate can be tuned by changing hc.

Figure 10 shows the STL of the sandwich plate with different hc when the
incident angle b¼ p/6 and the azimuth angle h¼ p/4. It is noted that with the
increase of hc, all the sound troughs move to the higher frequencies and
the sound peaks become larger, leading to the improvement of the STL, which

Figure 9. Effect of the height of the hourglass lattice core on the first four natural frequencies.

Figure 10. Effect of the height of the hourglass lattice core on STL of the sandwich plate.
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is because the increased height of the core layer results in a larger core mass and air
cavity thickness to improve the sound insulation [33]. Therefore, it can be con-
cluded that it is feasible to achieve desirable STL in specific frequency ranges by
controlling hc.

The rod radius is an important structural parameter which affects the equivalent
shear stiffness and density of hourglass lattice core, as well as the sound insulation
performance of the sandwich plate. Figure 11 reveals its effect on the first four
natural frequencies. Here, all other parameters are kept constant except for the rod
radius. With the increase in rod radius, the first natural frequency declines, while
the others first increase and then decrease with lower order modes having lower
turning points, and the lower the frequency order results in a lower value of turn-
ing point beyond which the frequency falls. This shows a similar trend to that
reported in Guo et al. [49]. This is the result of the counterbalance effect between
the mass and stiffness: the higher mass brings lower frequency and the higher
stiffness gives rise to higher frequency. In a word, the rod radius has different
influences on different order of natural frequencies. Therefore, the sandwich
plate with hourglass lattice core could obtain resonances at different frequencies
by designing the radius of the rods.

Figure 12 shows the effect of the rod radius on the STL of the sandwich plate
with hourglass lattice core when the incident angle b¼ p/6 and the azimuth angle
h¼p/4. It is indicated in the figure that with the increase in radius, all the sound
troughs slightly move to lower frequencies. In addition, in the frequency range
after first sound trough, it can be noted that the larger the rod radius is, the better

Figure 11. Effect of the rod radius on the first four natural frequencies.
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overall sound insulation performance could be achieved, because the increased rod
radius leads to increased equivalent mass density to help in sound insulation [35].
But a larger rod radius inevitably leads to a larger mass density. Therefore, some
compromise is indispensable if light weight and good sound insulation are both
demanded. In consequence, the rod radius needs to be chosen rationally in differ-
ent application situations.

With the increase of the face sheets thickness (i.e., hf), the mass and effective
stiffness of the sandwich plate are both increased. Hence, it is anticipated that the
thickness of face sheets must also have great influences on the natural frequencies
and STL. From Figure 13, it is observed that the first three natural frequencies

Figure 12. Effect of rod radius on STL of the sandwich plate.

Figure 13. Effect of the thickness of face sheets on the first four natural frequencies.
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increase with the increase of hf. While hf increases from 0.8mm to 1.8mm, the

fourth natural frequency first increases then decreases, which shows a similar trend

to that of Guo et al. [49]. This could be explained by combination effects of the

effective mass and stiffness: a larger mass results in lower natural frequencies, while

a larger stiffness brings about higher natural frequencies. The increase of effective

mass dominates in high frequency range while the increase of effective stiffness

dominates in low frequency range. The increase of the thickness (i.e., hf) implies the

simultaneous increasing mass and stiffness, therefore, effect on the natural fre-

quencies is nonmonotonic and dependent on whether the mass or the stiffness is

in the domination.
Figure 14 shows the STL of sandwich plate for various thicknesses of face sheet

when the incident angle b¼ p/6 and the azimuth angle h¼p/4. With the increase of

hf, all the first three sound troughs move to higher frequencies, and the sandwich

plate exhibits better STL which is easily understood that larger thickness leads to

better sound insulation performance. However, since the increase of hf counters to

the demand for light-weight, a proper hf should be selected to compromise light-

weight and sound insulation.
Effect of the incident angle b of the sound wave on the STL of sandwich plate is

investigated by keeping h¼p/4. It is observed from Figure 15 that with increase in

b, the performance of sound transmission becomes worse in the frequency range

from 0 to 1300Hz and it first gets worse and then better in the higher frequency

range, because of the possibility of constructive interference between incident

sound wave and structural bending wave in the former [50]. And it can be observed

that some sound troughs disappear when the incident angle is 0 due to that the

sound wave cannot stimulate all vibration modes of the sandwich plate.
For the given incident angle of p/6, Figure 16 shows the effect of azimuth angle

h of the sound wave on the STL of sandwich plate. It is found with h being 0 which

Figure 14. Effect of the thickness of face sheets on STL of the sandwich plate.
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means that the incident wave is parallel to the x-axis, the third sound trough
disappears due to the fact that the third-order vibration mode of the rectangle
sandwich plate cannot be stimulated by the sound wave. For a similar reason,
when h being p/2 which indicates that the incident wave becomes parallel to the
y-axis, the second trough disappears, because the second-order vibration mode is
not able to be stimulated which can be easily understood in Figure 17. Some
comments from the point of mathematical view are also provided to give a more
in-depth explanation. Take the case of h¼ 0 as example and recall that
ky ¼ k0sinbsin h. The component of the wave number along the y-axis direction
is zero, i.e., ky ¼ 0. It implies that for the incident wave, along the direction parallel

Figure 15. Effect of different incident angles on STL of sandwich plate with azimuth angle
h¼p/4.

Figure 16. Effect of different azimuth angles on STL of sandwich plate with incident angle
b¼ p/6.
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to the y-axis, there is no phase difference, i.e., amplitudes of the incident pressure

in equation (17) are y-independent

Pimn ¼ � 4

nap

Z a

0

Pi0e
�jkxxsin

mpx
a

½cos np� 1�dx (31)

From equation (31), it can be found that when n are even numbers including (1,

2), Pimn becomes zero. This gives the mathematical explanation for why some
vibration modes cannot be stimulated (i.e., Pimn ¼ 0) under the excitation of the

incident wave with h¼ 0. Similarly, following the same procedure, one can rigor-

ously derive the conclusion that the second-order vibration mode (as shown in

Figure 17(a)) of the plate cannot be stimulated with h¼p/2.
In addition to the above findings, it is noted that in low frequency range there is

nearly no variation in the STL through sandwich plate for different azimuth

angles. Thus, from the perspective of the behavior in low frequency range, the

influence of h on the STL can be almost ignored.

Effect of material properties

In practice, different components of the sandwich plate are often made of different

materials in consideration of its multi-functionalities, and sometimes they perform
better than the sandwich structure with a single material in specific properties [35].

Various configurations are considered in this section. For example, S–S–S denotes

the sandwich plate with face sheets and core layer made of steel and Al–S–Al

denotes the sandwich plate with core layer made of steel and face sheets made

of aluminum. In the following case study, the influence of different combinations

of steel, Al and Ti materials on sound transmission characteristics is studied. For
Al and Ti, the Young’s moduli are 77.6 and 107GPa, respectively; the mass den-

sities are 2730 and 4510 kg/m3, respectively; the Poisson’s ratio are 0.35 and 0.32,

respectively. Material properties of steel have already been listed in Table 2.
In Figure 18(a), dimensions of the sandwich structure are kept constant and

only the variations of the materials are considered. It is noted that the combination
of S–Ti–S, S–Al–S have the higher frequency for the first sound trough, and in

general, the combination of S–S–S exhibits the best performance in terms of sound

Figure 17. (a) (2, 1) modal shape for f¼ 1298Hz, (b) (1, 2) mode shape for f¼ 1577Hz.
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insulation in the concerned frequency range of 0–2000Hz. Without loss of gener-
ality, the rules of weight equality are used and the dimensions are kept constant

except for hf, hc and material properties. It is worth mentioning that the ratio of hc
to hf is fixed to be 15 to ensure the validity of the modeling theory. Figure 18(b)
shows that the combination of Al–S–Al outperforms other combinations in terms
of the sound transmission characteristics. The combination of S–S–S shows the
worst performance, because of its lowest shear stiffness. In practice, the engineer-

ing structures are usually designed to avoid the potential external excitation fre-
quency and/or achieve the proper dimensions and weight. Therefore, different
combinations of materials should be carefully designed for the application of the
lattice sandwich plates with different purposes.

Conclusions

This article has presented a study on the sound transmission characteristics of
sandwich plate with the hourglass lattice truss core. The Reissner sandwich plate

Figure 18. Comparison of the STL for hourglass lattice core sandwich plate with different
combination of materials, (a) with same dimensions, (b) with same weight.
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theory has been used to establish the vibro-acoustic coupling model of the lattice

sandwich plate. The developed theoretical model is verified by comparing with the

existing literature and FEM. A parametric study has been conducted to investigate

the effects of structural and material parameters on sound insulation performance

of the sandwich plate. It has been found that by appropriately tuning the geometric

parameters, the hourglass core sandwich plate can exhibit a better STL perfor-

mance than traditional lattice core sandwich plates. Moreover, by selecting differ-

ent combinations of materials, a desirable sound insulation may be achieved. The

results of this work provide some guidelines for the design of hourglass lattice core

sandwich plate in the applications for sound insulation.
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Appendix 1

Figure 19 shows the deformation diagram of the simply supported sandwich plate.

It is assumed that there exists an in-plane rotating angle uy for the core layer on the

planes x ¼ 0 (a), while there is no rotation for the face sheets, which forms a

discontinuity between them. But in fact, the face sheets should be continuous

with the core layer which indicates uy has to be 0, due to that the displacements

of four sides of the sandwich plate are all zero under the simply supported bound-

ary conditions. The premise of this assumption is that the core layer can be

regarded as very soft and only has very minor contribution to the bending stiffness

of sandwich plate [48]. Similarly, ux should be 0 on the planes y ¼ 0 (b) for the

simply supported sandwich plate.

Appendix 2

The simply supported boundary conditions are given in equation (5). Substituting
equation (5) into equation (1) yields

w ¼ 0;
@ux

@x
¼ 0; uy ¼ 0 (32)

Substituting equation (3) into equation (32), one obtains

w�D

C
r2w ¼ 0;

@2w
@x2

þ @2f

@x@y
¼ 0;

@w
@y

� @f

@x
¼ 0 (33)

And equation (33) can be simplified as

w ¼ 0; r2w ¼ 0;
@f

@x
¼ 0 (34)

Figure 19. Deformation diagram of a differential element of the sandwich plate.
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From equations (4) and (34), f should be 0 for simply supported boundary
conditions.

Appendix 3

The supplementary study is provided to prove the bending stiffness of core layer is
reasonably to be neglected if the structural parameters change within certain
ranges. The equivalent elastic modulus of core layer is given in Deshpande and

Fleck [41] as Ec ¼ Ef�qsin
4a. Thus, the bending stiffness of core layer is obtained to

be Dc ¼ Ech
3
c

12ð1��2
f
Þ. For different rc, hf, and hc, the effective bending stiffnesses of the

sandwich plates with and without the cores are given in Tables 4 to 6. The other
material and structural parameters used in the calculation are the same as those in
“Comparison of different lattice cores” section. It can be seen that the bending
stiffness of core layer can be relatively neglected as compared to total bending
stiffness of the sandwich plate for certain structural sizes.

Table 4. Effects of rod radius on bending stiffness of the sandwich plate.

rc (mm) 0.7 0.8 0.9 1.0 1.1

D (without core, Pa�m3) 29,538 29,538 29,538 29,538 29,538

DþDc (with core, Pa�m3) 30,166 30,358 30,576 30,820 31,089

Relative errors(%) �2.0 �2.7 �3.4 �4.2 �5.0

Table 5. Effects of face sheet thickness on the bending stiffness of the sandwich plate.

hf (mm) 0.8 1.0 1.2 1.5 1.8

D (without core, Pa�m3) 23,043 29,538 36,338 47,120 58,619

DþDc (with core, Pa�m3) 24,325 30,820 37,619 48,402 59,900

Relative errors(%) �5.3 �4.2 �3.4 �2.9 �2.1

Table 6. Effects of height of the core layer on bending stiffness of the sandwich plate.

hc (mm) 7 9 11 13 15

D (without core, Pa�m3) 7385 11,538 16,615 22,615 29,538

DþDc (with core, Pa�m3) 7412 11,645 16,911 23,278 30,820

Relative errors(%) �0.4 �0.9 �1.8 �2.8 �4.2
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